
Hart 1

Sullivan Hart

Md Maruf Ahamed

CPR E 281: Section 7

5 May 2023

Final Project Report: “Project #1”

I chose to complete Project #1, circuit for checking if a list of numbers is sorted. My

report contains a holistic view and description of my design as well as part-by-part view

and explanation of each module.

Top Level Diagram

The Top Level Diagram includes three parts: Part A, Part B, and Part C. Together,

the parts make a complete circuit that is able to toggle between two modes: load, intake

four bit numbers from the board to store in a register file; and search, iterate in a loop

Hart 2

through that same register file to ensure the numbers are sorted in ascending order

(higher indexes have higher numbers).

The inputs are a variety of board-generated signals: LD0 to LD3 (the number to

insert in the register file), WA0 to WA2 (the index in the register file to write the LD number

to), WR (the toggle between the two modes of the circuit, load and search), Reset (the

reset toggle for the search loop), CLEAR (sets each register in the file to 0000), userCLK

(the manual clock to iterate through the search loop and input the numbers in load),

BoardCLK (the board’s clock of 50 MHz), and various VCCs and GNDs. The outputs

include an assortment of lights to make the output appear in a human-readable way: 1A

to 1G (the value stored in the highest index being compared), 2A to 2G (the value stored in

the lowest index being compared), Greater (asserts if the higher index’s stored value is

larger than the lowest index’s), Equal (asserts if the higher index’s stored value is the same

as the lowest index’s), Smaller (asserts if the higher index’s stored value is less than the

lowest index’s), and 3A to 3G (the lowest index being accessed), 4A to 4G (the highest

index being accessed).

To produce the desired outputs, the WR switch dictates if the circuit is in load or

search mode. When WR asserts, the circuit is in load mode. The register file uses LD and

WA to store values. When WR doesn’t assert, the register file uses a state machine to cycle

through the register file. As long as the higher index’s value is greater or equal than the

lower index’s value, the user is able to press the button to search through the register file.

When the higher index’s value is smaller, so not in ascending order, the user is no longer

able to cycle through the file; when the array isn’t ascending, the output is frozen until the

user resets the search with the Reset button. To make the output clearer, a green light

Hart 3

illuminates when the pair of numbers being compared is ascending or equal, and the light

switches to red when the pair is descending.

Part A

Hart 4

Part A consists of the inputs, which were previously discussed, and the state

machine. The state machine takes input from the comparator output, the board clock, the

user’s clock, WR, and reset. The counters count in the sequence (1, 0), (2, 1), (3, 2), (4, 3), (5,

4), (6, 5), (7, 6), and back to (1, 0) as long as WR, Smaller, and Reset don’t assert. If WR or

Smaller asserts, the counters are no longer enabled, so they are e�ectively paused. If

Reset asserts, the counters output (1, 0) for as long as reset asserts. The starting values

are given in each counter’s D0 to D2 input, and receive their desired starting values as

binary made with VCC and GND. The counters reset to their respective starting values (1

and 0) when Load receives a high input. To accomplish this, Load receives a high input

whenever Reset is asserted or the output is the last number in the cycle (7 and 6). Finally,

Part A includes a damper for the clock signal. The damper uses the board’s clock signal

and a button controlled by the user to create a more accurate input from the user.

Clock Debouncer

The user input is passed through a D flip-flop each time a slowed version of the

board’s clock encounters a rising edge. The board’s clock passes through two clock divider

Hart 5

circuits. Each time it passes through, it reduces the number of rising edges per second to

1/1024 of the previous rate. Since it does this twice, the original speed of 50 MHz turns

into ~47.68 Hz or .02 seconds. The output, smooth, is a consistent output when compared

to the board’s button’s output. The board’s clock is slowed by using the clock divider.

Clock Divider

The clock divider reduces the input signal by using a counter. The counter,

consisting of ten T flip-flops, asserts an output, after it receives 1024 rising edges. This

can be seen by the fact that two to the tenth power is 1024.

3 Bit Counter

Hart 6

The counter, when enabled, will start at a value (D0, D1, D2) and continue to count

up each time it receives a clock signal until it reaches the largest number it can hold (1, 1,

1). When not enabled, it won’t do anything. When load is asserted, the initial values will be

outputted each time there’s a clock signal. To achieve this, it uses AND gates to ensure the

circuit only counts when it has a high enable input. It uses multiplexers to pass through

the load signal when load is asserted, and the D flip-flop’s output from the previous clock

cycle. It takes the current output of the three D flip-flops and combines them to an output

bus.

Two to One Multiplexer

The multiplexer uses a select line, S, to choose which of the two input values, D0

and D1, to pass through to the output, Q. When the select line asserts, D1 is passed

through because D1’s AND gate has the potential to assert and D0’s can’t assert. Thus, Q

asserts if D1 asserts and doesn’t assert if D1 doesn’t assert. The same is true for D0 and

its ANDgate.

Hart 7

Part B: Register File

Part B only has one component, a register file. Both the block diagram and circuit

diagram are shown above. The circuit represents a parallel-load register file, capable of

Hart 8

holding eight four bit numbers. The register file has one write port and two read ports. The

inputs consist of a clock (update each register), clear (resets each register), WA (a three

bit number that specifies which register to write to), WR (enables the circuit to write to a

register), LD_Data (a four bit number that is stored in the selected register when WR

asserts), RP (a three bit number that specifies which register to read from), and RQ

(another three bit number that specifies which register to read from). The outputs consist

of two four bit numbers, DATAP and DATAQ; both of these outputs represent the value

stored in the respective registers being accessed. The register file works by using a

decoder to assert the LOAD input of the desired register based on WA (on the next clock

cycle). If the decoder isn’t enabled, no value will be stored. The four bit eight to one

multiplexers outputs the value of one of the registers. The register is chosen by either RP

or RQ.

Decoder

Hart 9

The decoder has eight statements. Each statement depends on W, a three bit

number indicating which output to assert, and E, enable. If E asserts, the program will

assert the corresponding output, one of F0 to F7. If E doesn’t assert, no output asserts.

Four Bit Register

The four bit register is a combination of four register blocks. Each register block

receives one of the bits from the four bit input, IN. When the LOAD input asserts, the

registers all update on the same clock cycle. The CLEAR input sets all register blocks to 0

on the same clock cycle. Each register’s output, Q, combines to make this circuit’s output,

OUT.

Hart 10

Register

The register is the lowest level of the register file. The input bit, IN, is passed

through the D flip-flop when Load asserts. When Load doesn’t assert, the D flip-flop’s

output from the last clock cycle is kept. This is accomplished using a two to one

multiplexer as described prior. However, the multiplexer circuit is implemented instead of

its block symbol. The Clear symbol sets the D flip-flop to zero on the next clock cycle when

enabled. Lastly, the D flip-flop’s output, Q, is used as this circuit’s output. An inverted

version of Q is also present as an output.

Eight to One Four Bit Multiplexer

The eight to one multiplexer works in a similar way to the decoder. However, it

passes a four bit input, W0 through W7, to the output, F. It chooses which input to output

based on X, a three bit input, to choose the respective W.

Hart 11

Part C

Hart 12

Part C has two purposes: interpret the date from the register file, and output the

data from the circuit. To interpret, Part C uses a comparator. The comparator compares

the two four bit numbers being accessed in the register file. DATAP, the data being stored

in the highest index being compared, and DATAQ, the data being stored in the lowest

index being compared, are interpreted and displayed by the seven segment decoder. The

interpreted version of DATAP and DATAQ assert collections of output pins, 1A through 1G

and 2A through 2G. DATAP and DATAQ also are interpreted by the comparator. The

comparator checks the relationship between DATAP and DATAQ, and asserts one of the

related output pins (Greater, Equal, or Smaller). In a similar way to how DATAP and DATAQ

are displayed, the address of DATAP and DATAQ are shown on the board.

Seven Segment Decoder

The seven segment decoder asserts one of the seven outputs, A through G,

depending on the four bit input number, x0 through x3. Which output asserts depends on

the physical location of the light on the display, shown on

the diagram below (A = 0, B = 1, … G = 6). Each output is

asserted based on the hexadecimal representation (ranging

from 0 to F) of the input.

Hart 13

Four Bit Comparator

The four bit comparator compares a high number, B0 through B3, to a low number,

A0 through A3, and determines the relationship when Enable is high. If B is larger, Greater

asserts; If If A is larger, Smaller asserts; and if they are the same value, Equal asserts. To

accomplish this, the circuit has three parts which are clearly separated in the circuit

diagram. Using XNOR gates outputting to an AND, Equal asserts when the nth bit of A is

the same as the nth bit of B for n zero, one, two, and three. If the AND gate asserts and

Enable is high, the equal pin asserts. The Greater pin asserts when B’s equivalent value is

greater than A’s. To accomplish this, the circuit checks for any instance when B has a one

in the index that A has a zero. If this occurs and Enable is high, Greater asserts. Smaller is

nearly identical to Greater, but checks for instances when B has a zero and A has a one.

